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a b s t r a c t

We present an efficient numerical methodology for the 3D computation of incompressible
multi-phase flows described by conservative phase-field models. We focus here on the case
of density matched fluids with different viscosity (Model H). The numerical method
employs adaptive mesh refinements (AMR) in concert with an efficient semi-implicit time
discretization strategy and a linear, multi-level multigrid to relax high order stability con-
straints and to capture the flow’s disparate scales at optimal cost. Only five linear solvers
are needed per time-step. Moreover, all the adaptive methodology is constructed from
scratch to allow a systematic investigation of the key aspects of AMR in a conservative,
phase-field setting. We validate the method and demonstrate its capabilities and efficacy
with important examples of drop deformation, Kelvin–Helmholtz instability, and flow-
induced drop coalescence.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Fluid–fluid interfaces such as those bounding drops and bubbles are present in a large number of complex fluids such as
emulsions, foams, and polymeric solutions which are found in a wide variety of industrial applications. The understanding of
the dynamics of these systems is thus of significant scientific and technological interest. Numerical simulation can play an
instrumental role toward aiding in achieving this goal. However, it is an outstanding computational challenge to accurately
capture all the disparate time and length scales involved in these complex, nonlinear phenomena. Of course, this challenge is
magnified for physically realistic three-dimensional computations.

In recent years conservative phase-field models have gained increased attention [1–11] as viable tools for the numerical
investigation of multi-component flows. These are a particular type of diffuse-interface methods (see e.g. the review [12] and
the references therein) in which fluid–fluid free boundaries are given a finite thickness. The idea of a diffuse interface [13–
17] is compatible with the observation that physically there is a rapid but smooth transition of material properties across a
fluid interface. In contrast, in a sharp interface model a free boundary is represented with zero thickness and the material
properties are discontinuous across it.

The basic idea of the phase-field approach is to introduce an order parameter or phase field / that varies continuously
over a thin transition layer and is mostly uniform in the bulk phases. The models have an appealing variational-based for-
malism which facilitates the inclusion of different physical effects. In the conservative models, the evolution of / is governed
. All rights reserved.
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by a fourth order equation of the Cahn–Hilliard type and due to a critical balance between nonlinear and diffusive terms, the
solution’s thin transition layer do not deteriorate dynamically. However, the numerical solution of these models is a daunt-
ing task. To their complex mathematical structure, characterized with high order derivatives and intricate nonlinearities, we
must add the need to accurately resolve simultaneously the macroscopic flow and the extremely thin interfacial layer, as
well as several time scales.

There have been recent advances in the numerical simulation of these models that include a Fourier spectral method [18],
the design of implicit nonlinear multigrid methods [5,6], linear semi-implicit methods [3,21] and two-dimensional adaptive
methods [11,19–21,26]. Here, we build on two of these recent works to develop, step by step, 3D, fully adaptive simulations
for a phase-field model of an incompressible fluid with matched densities and variable viscosity, known as Model H accord-
ing to the nomenclature of Hohenberg and Halperin [27]. The numerical methodology is based on the application of a linear
semi-implicit time discretization combined with the projection method and using an accurate spatial discretization on adap-
tive mesh refinements [3,21]. The semi-implicit linear systems are solved at optimal cost with a multigrid approach. We also
propose a scaling of surface tension that depends on the interfacial thickness and that appears to provide an appropriate cal-
ibration for similar phase field models. To our knowledge, the simulations presented here are one of the first fully adaptive
3D computations of Model H without the use of any public or commercial pre-built adaptive mesh modules. While revising
this article, a finite element based, adaptive numerical method for 3D phase-field simulations was introduced by Zhou et al.
[30]. Their adaptive method uses Delaunay mesh refinements and a fully implicit time discretization which is solved via
Newton iterations.

The rest of the paper is organized as follows. We describe the model in Section 2 and devote Section 3 to discuss in detail
the numerical approach. This is followed by a series of physically relevant numerical examples in Section 4 with which we
validate and test the capabilities of the proposed methodology. Some final remarks are presented in Section 5.

2. The governing equations: Model H

We focus in this work on the conservative phase-field model that describes the coupling of a density matched, incom-
pressible, binary mixture with a hydrodynamic flow. The system is described by an order parameter or phase field / which
is a measure of the relative composition or volume fraction of the two components and has an associated free energy given
by
H½/� ¼
Z

X

1
2
ajr/ðxÞj2 þ bf ð/ðxÞÞ

� �
dx; ð1Þ
where X is the region of space occupied by the system and a and b are constants. The gradient term accounts for the surface
energy and bf(/(x)) is the bulk energy density. To model two-phase flow, we choose f to be the double-well potential:
f ð/Þ ¼ 1
4
ð1� /2Þ2: ð2Þ
The evolution of the order parameter is governed by the convective Cahn–Hilliard equation [28,29] which guarantees the
conservation of the mean of /:
@/
@t
þ u � r/ ¼ r � ½Mð/Þrlð/Þ�; lð/Þ ¼ dH½/�

d/ðxÞ ; ð3Þ
where u is the flow velocity, M(/) is the mobility or Onsager coefficient and l(/) is the chemical potential. In the absence of
flow (u � 0), equilibrium states are characterized by l(/) = constant. In addition to the two stable uniform states that cor-
respond to /(x) � ±1, there is a one-dimensional equilibrium solution that characterizes the interfacial, transition layer and
is given by (see e.g. [33])
/0ðzÞ ¼ tanh
zffiffiffi
2
p

n

� �
; ð4Þ
where
n ¼
ffiffiffi
a
b

r
: ð5Þ
Following [2], we define the interface thickness � as the distance between / = �0.9 and / = 0.9. For the equilibrium interface,
we have
� ¼ 2
ffiffiffi
2
p

tanh�1ð0:9Þn � 4:164n: ð6Þ
The conservation of momentum can be expressed in terms of the incompressible Navier–Stokes equations with the addition
of a phase field-dependent surface force l(/)r/ [34]:
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q
@u
@t
þ u � ru

� �
¼ �rpþr � ½gð/ÞðruþruTÞ� þ lð/Þr/; ð7Þ

r � u ¼ 0; ð8Þ
where q is the (constant) density, p is the pressure that enforces the incompressibility constraint (8), and g(/) is the (con-
centration-dependent) viscosity. The coupled Cahn–Hilliard/Navier–Stokes system (3)–(8) is referred to as Model H [27]. We
note that different phase-field models have been proposed for the case of variable density [35,36]. Many of the salient com-
putational challenges of these models are also present in Model H. Thus, we believe that development of the computational
methodology for this simpler model is an important step toward that required for the more elaborate phase-field models of
multi-phase and complex fluids.

We nondimensionalize the Model H equations with the variables
u0 ¼ u
Uc
; t0 ¼ t

Tc
; x0 ¼ x

Lc
; p0 ¼ pLc

gcUc
; ð9Þ
where Lc, Uc, Tc, and gc are characteristic length, velocity, time, and viscosity, respectively. We select Lc to be the horizontal
extent of the fluid domain and Uc will be taken in this work to be that of an imposed shear. Defining Tc = Lc/Uc, and dropping
the primes we obtain
@/
@t
þ u � r/ ¼ 1

Pe
r � ½Mð/Þrlð/Þ�; ð10Þ

Re
@u
@t
þ u � ru

� �
¼ �rpþr � ½gð/ÞðruþruTÞ� þ 1

Ca
lð/Þr/; ð11Þ

r � u ¼ 0; ð12Þ
where now g(/) and M(/) have been normalized by characteristic viscosity and mobility gc and Mc, respectively, and l has
been scaled by b. The dimensionless groups used above are the Reynolds number, the capillary number, the Péclet number
given by
Re ¼ qUcLc

gc
; Ca ¼ gcUc

bLc
; Pe ¼ UcLc

Mcb
; ð13Þ
respectively. The Reynolds number Re is the ratio between inertial and viscous forces and the capillary number Ca provides a
measure of the relative magnitude of viscous and capillary (or interfacial tension) forces at the interface.

The Péclet number Pe is the ratio between the non-viscous diffusive time scale and the convective time scale. Naturally,
we would like the phase-field flow to converge to the corresponding the sharp interface flow as �? 0. Formally, this could be
accomplished if 1/Pe goes to zero as �? 0. Following Jacqmin [2] and Lee et al. [31], we take here Pe = O(1/�). Other scalings
have been proposed for different flow situations [32].

The surface tension r for the phase-field model can be estimated from the flat, equilibrium interface to give [33]
r ¼ 2
ffiffiffi
2
p

3

ffiffiffiffiffiffi
ab

p
: ð14Þ
Note from (5), (6) and (14) that the interface thickness is O n ¼
ffiffi
a
b

q� �
and the surface tension is Oð

ffiffiffiffiffiffi
ab
p
Þ. Thus, surface tension

will be O(1) if we select a = O(�) and b = O(1/�). Using (14) we can write Ca in terms of the surface tension as:
Ca ¼ 2
ffiffiffi
2
p

3
n
Lc

gcUc

r
: ð15Þ
Thus, for this phase-field model, the capillary number depends on the interface thickness. More precisely, defining the Cahn
number K by
K ¼ n
Lc
; ð16Þ
which is a relative measure of the interface thickness, we can write Ca as
Ca ¼ 2
ffiffiffi
2
p

K
3

Ca�; ð17Þ
where Ca* = gcUc/r is the capillary number as is usually defined for a sharp interface. This relation suggests that in
order to compare with sharp interface and experimental results one should scale the phase field capillary number
by the factor
cK ¼
2
ffiffiffi
2
p

K
3

: ð18Þ
We verify this scaling in the numerical experiments.
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The dimensionless chemical potential is given by
lð/Þ ¼ /3 � /� K2r2/: ð19Þ
We consider the viscosity gas a linear function of the order parameter /. That is, if g� 6 g 6 g+ and gc = g� we get
gð/Þ ¼ k� 1
2

/þ kþ 1
2

; ð20Þ
where k = g+/g� is the viscosity ratio. In this way g gets automatically diffused across the interface with a profile similar to
the tanh function.

We focus in this work on the case of constant mobility, M(/) = 1.
To summarize, the form of Model H that we consider is given by (10), (11), (12), (19), (20) and M(/) = 1. It is important to

note that the Cahn number K (or n) is the main parameter for this model. In fact, taking Pe = O(1/K), as argued above, K be-
comes the only adjustable parameter of the phase-field model as the remaining parameters are of physical nature (Re and
Ca).

3. The numerical methodology

We adopt the semi-implicit time scheme used in [3] and extend the 2D adaptive spatial discretization of the Cahn–Hil-
liard equation in [21] to the current 3D setting of Model H.

3.1. Time discretization

The time scheme for the coupled system is based on an extraction of linear, leading order terms and on an implicit treat-
ment of these to remove high order stability constraints without paying the price of iterative nonlinear solvers.

We begin by rewriting the Model H Eqs. (10)–(12). Letting u1 = /, we have
@u1

@t
¼ 1

Pe
r2u2 þ g1ðu1;u2;uÞ; ð21Þ

u2 ¼ su1 � K2r2u1; ð22Þ
@u
@t
¼ � 1

Re
rpþ

�g
Re
r2uþ 1

ReCa
lðu1;u2Þru1 þ g2ðu1;uÞ; ð23Þ

r � u ¼ 0; ð24Þ
where s and �g are constants to be specified later and
g1ðu1;u2;uÞ ¼
1
Pe
r2lðu1;u2Þ �

1
Pe
r2u2 � u � ru1; ð25Þ

g2ðu1;uÞ ¼
1
Re
r � ½gðu1ÞðruþruTÞ� �

�g
Re
r2u� u � ru: ð26Þ
Thus, according to (22), the chemical potential can be expressed by
lðu1;u2Þ ¼ u3
1 � ð1þ sÞu1 þu2: ð27Þ
The strategy now is to employ a semi-implicit discretization treating the terms g1 and g2 explicitly and all the other terms on
the right hand side of (21)–(23) implicitly. As in [3], we adopt here the extrapolated Gear Method, a second order semi-back-
ward difference formula (SBDF), extended to allow for variable time stepping [21]. Leaving the discretization in space for
later, the semi-implicit scheme for Model H is given by
a2unþ1
1 þ a1un

1 þ a0un�1
1

Dt
¼ 1

Pe
r2unþ1

2 þ b1g1ðun
1;u

n
2;u

nÞ þ b0g1ðun�1
1 ;un�1

2 ;un�1Þ; ð28Þ

unþ1
2 ¼ sunþ1

1 � K2r2unþ1
1 ; ð29Þ

a2unþ1 þ a1un þ a0un�1

Dt
¼ � 1

Re
rpnþ1 þ

�g
Re
r2unþ1 þ 1

ReCa
lðunþ1

1 ;unþ1
2 Þrunþ1

1 þ b1g2ðun
1;u

nÞ

þ b0g2ðun�1
1 ;un�1Þ; ð30Þ

r � unþ1 ¼ 0; ð31Þ
where a0 = Dt2/(Dt0Dt1), a1 = �Dt1/Dt0, and a2 = (Dt0 + 2Dt)/Dt1, b0 = �Dt/Dt0 and b1 = Dt1/D t0, with Dt = tn+1 � tn,
Dt0 = tn � tn�1, and Dt1 = Dt0 + Dt. For fixed time step, the coefficients above assume their usual, constant values a0 = 1/2,
a1 = �2, and a2 = 3/2, b0 = �1 and b1 = 2. The stability of this type of semi-implicit discretization has been analyzed recently
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by Xu and Tang [37] for the case of some continuum epitaxial growth models. The value of the ‘‘stability parameters” s and �g
agrees with that predicted in [37].

In (28)–(31), the phase field is updated first by solving (28) and (29) and then the velocity field is updated using a pro-
jection method to solve (30) and (31) as we detail below. To initialize the SBDF, we employ the semi-implicit Euler Method,
unþ1
1 �un

1

Dt
¼ 1

Pe
r2unþ1

2 þ g1ðun
1;u

n
2;u

nÞ; ð32Þ

unþ1
2 ¼ sunþ1

1 � K2r2unþ1
1 ; ð33Þ

unþ1 � un

Dt
¼ � 1

Re
rpnþ1 þ

�g
Re
r2unþ1 þ g2ðun

1;u
nÞ þ 1

ReCa
lðunþ1

1 ;unþ1
2 Þrunþ1

1 ð34Þ

r � unþ1 ¼ 0: ð35Þ
3.2. The projection method

To solve (30) and (31), we employ an incremental pressure-correction scheme based on the variable time step, extrapo-
lated Gear Method [25]. The procedure can be summarized as follows. First, we find an intermediate field u*
a2u� þ a1un þ a0un�1

Dt
¼

�g
Re
r2u� þ 1

ReCa
lðunþ1

1 ;unþ1
2 Þrunþ1

1 þ b1g2ðun
1;u

nÞ þ b0g2ðun�1
1 ;un�1Þ � rpn

Re
; ð36Þ
with u* = un+1 at the boundary @X. The intermediate velocity is connected to un+1 through a pressure increment
qn+1 = pn+1 � pn:
u� ¼ unþ1 þ Dtrqnþ1

a2Re
: ð37Þ
Applying the incompressibility condition r � un+1 = 0 to (37), we obtain a Poisson equation which satisfies a homogeneous
Neumann boundary condition for the pressure increment given by
r2qnþ1 ¼ Re
a2

Dt
r � u�; @qnþ1

@n
¼ 0 on @X: ð38Þ
After solving (38), the updated velocity is obtained from (37).
For sufficiently smooth problems, it can be shown that the pressure-correction scheme based on the second order back-

ward difference formula presents second order accuracy for the velocity and first-order accuracy for the pressure [23]. The
loss of accuracy is due to the homogeneous Neumann boundary condition adopted for the pressure-correction Poisson equa-
tion which implies that r pn+1 � n =rpn � n = � � � =rp0 � n, thus enforcing a non-physical Neumann boundary condition for
the pressure. As a matter of fact, that accuracy behavior is expected to hold if the algorithm is implemented with any A-sta-
ble second order time stepping. Since those schemes have an irreducible splitting error of O(Dt2), even using a higher than
second order time stepping for approximating the operator @t � mr2 does not improve the overall accuracy [22]. Moreover, it
can also be shown that the pressure approximation in standard pressure-correction schemes can be at most first-order accu-
rate [24]. In that context, we expect that the solution of (36)–(38) to be second order accurate for the velocity and first order
for the pressure.

3.3. Adaptive spatial discretization

Our computational domain is the parallelepiped X = [A1, B1] � [A2, B2] � [A3, B3]. We employ local mesh refinements to
efficiently resolve the thin transition layer of the solution. The composite grid is block-structured and is defined as a hier-
archical sequence of nested, progressively finer grid levels [38]. Each level is formed by a set of non-overlapping parallelep-
idedal grid blocks aligned with the coordinate axes and the refinement ratio between two successive levels is two. Fig. 1
shows an example of such a composite grid with three refinement levels. The mesh is replaced dynamically to ensure that
the transition layer is covered with the finest level at all times. Additionally, a remeshing is triggered at every certain fixed
number of time steps to ‘‘refresh” the composite grid [21].

Ghost cells are appended to each grid block for all levels as well as underneath fine grid blocks to prevent the redef-
inition of finite difference operators at grid borders and at interior regions which are covered by finer levels. The cor-
responding values at these ghost cells are obtained from interpolation. Following [21] we use second order polynomial
interpolation at grid interfaces and third order interpolation only near a T-junction of two grid blocks of the same level.
As the numerical experiments will demonstrate, these interpolations are sufficient to obtain global second order
accuracy.

To cover the interfacial layer, we flag for refinement all the cells whose value of the order parameter / is close to zero [21].
By adopting that simpler strategy, the region around the interface will be refined uniformly. Note that for certain problems it



Fig. 1. Example of an adaptive composite grid. (a) A two-phase domain with a thin transition layer represented by the light color, (b) a three-level
composite grid, (c) an isosurface of the interface and (d) grid blocks of the finest grid level covering the transition layer (diffuse interface).
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would be more efficient to flag cells for refinement accordingly to some error estimator (or distance to the interface) strategy
thus having special regions of the flow covered by a greater number of refinement levels than others (e.g. in narrow transi-
tion regions where the interface undergoes topological changes). We have postponed the implementation of such optimized
strategies to future work and focused our efforts to other components of the methodology. More specifically, in the current
implementation, we flag those cell indexes rst such that
j/rst j=k/k1 6 dmesh: ð39Þ
Typical runs employed dmesh = 0.95. With the set of flagged cells, the grids at each level are generated by the algorithm
for point clustering of Berger and Rigoutsos [39]. To facilitate the implementation of the projection method, the variables
are placed as in a MAC grid. That is, scalar variables such as the pressure, the order parameter, the mobility, and the
viscosity are defined at the cell centers while the velocity components are placed at the center of the cell faces as illus-
trated in Fig. 2.
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z

Fig. 2. Placement of variables in a cell for a MAC-style grid. Scalars such as p, u1, u2, g, and M are located at the cell centers (A). The x, y, and z components of
the velocity are placed at the center of the yz face (B), the center of the xz face (C), and the center of the xy face (D), respectively.
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3.4. Discrete spatial operators

We use standard second order finite differences to approximate the spatial derivatives. Thus, the discrete gradient G of a
scalar quantity such as / is computed by
G/i;j;k ¼ ðDx/i�1=2;j;k;Dy/i;j�1=2;k;Dz/i;j;k�1=2Þ; ð40Þ
where
Dx/i�1=2;j;k ¼
/i;j;k � /i�1;j;k

Dx
; ð41Þ

Dy/i;j�1=2;k ¼
/i;j;k � /i;j�1;k

Dy
; ð42Þ

Dz/i;j;k�1=2 ¼
/i;j;k � /i;j;k�1

Dz
: ð43Þ
At coarse cell faces, underneath fine grid patches belonging to the next finer level, the first derivative is defined by the aver-
age of the corresponding finer ones.

The discrete divergence operator D for a vector
ui;j;k ¼ ðui�1=2;j;k; v i;j�1=2;k;wi;j;k�1=2Þ;
whose components are located at the center of the cell faces, is given at the cell center by
D � ui;j;k ¼
uiþ1=2;j;k � ui�1=2;j;k

Dx
þ v i;jþ1=2;k � v i;j�1=2;k

Dy
þwi;j;kþ1=2 � v i;j;k�1=2

Dz
:

A discrete Laplacian operator L for cell-centered variables is obtained by composing G and D i.e., L/i, j, k = D � G/i,j,k.

3.5. Solving the resulting linear systems

Due to our semi-implicit time discretization, we can decouple the discrete Model H system. We update first the phase
field by solving the linear system corresponding to the fully discrete convective Cahn–Hilliard Eqs. (28) and (29). We then
proceed to update the velocity field with the projection method and employing the available /n+1 in the surface force term
l(/)r/. In total, we only solve five linear systems on the composite grid: one for the Cahn–Hilliard equation, three for the
components of the intermediate velocity, and one for the pressure. To our knowledge, this is the most efficient time-march-
ing ever proposed for a discretization of Model H on an adaptive mesh.

To solve these linear systems we employ a multi-level multigrid method. Here multilevel refers to the fact that a multi-
grid method is applied on each level of refinement. Thus, we distinguish between physical levels which are the levels of
refinement in the composite mesh and virtual levels which are the usual levels associated with a multigrid. Given the hier-
archical structure of the composite mesh, the virtual levels are just those below the coarsest physical level.



NPL

NVL

LBOT

LTOP

Fig. 3. Comparison of the standard V multigrid cycle (left) and the modified W cycle (right) adopted in this work. NPL = number of physical levels,
NVL = number of virtual levels, LTOP = finest physical (refinement) level, and LBOT = coarsest physical level.
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Based on preliminary results reported in [40] we adopt a modified W cycle for our multigrid. This adapted W cycle is a V
cycle on the physical levels but becomes a W cycle in the virtual levels. Fig. 3 illustrates this strategy. This multigrid appears
to give better performance than the standard V cycle when there are four or more virtual levels as is the case for our 3D
computations [40].

The application of the multi-level multigrid to solve for the intermediate velocity components and the pressure equation
in the projection method is documented in detail in [41]. For Cahn–Hilliard discrete system we have
a2

Dt
unþ1

1i;j;k
� 1

Pe
D � Gunþ1

2i;j;k
¼ bi;j;k; ð44Þ

ðs� K2D � GÞunþ1
1i;j;k
�unþ1

2i;;j;k
¼ 0; ð45Þ
where bi;j;k ¼ �a1un
1i;j;k

=Dt � a0un�1
1i;j;k

=Dt þ b1gn
1i;j;k
þ b0gn�1

1i;j;k
. We solve this system with the linear multi-level multigrid method

using red–black Gauss–Seidel relaxations in the modified W cycle. Each relaxation sweep merely requires solving a trivial
2 � 2 linear system. The details of the implementation and multigrid parameters can be found in [21,42].

3.6. Numerical stability

We follow [3] to select Dt. Due to the explicit treatment of the convection term we have a CFL (Courant, Friedrichs and
Lewy) stability constraint given by
DtCFL 6
juj1
Dx
þ jvj1

Dy
þ jwj1

Dz

� ��1

: ð46Þ
Due to the coupling between Cahn–Hilliard and Navier–Stokes equations, there is a stability constraint induced by the sur-
face tension term given by [3,49]
Dts 6 C1

ffiffiffiffiffiffiffiffiffiffiffi
ReCa
p

½minfDx;Dy;Dzg�3=2
; ð47Þ
where C1 is a constant. We are using the Gibbs–Thomson boundary condition [33], l(/)[/] = �rj, where [/] stands for the
jump of the order parameter across the interface and j is the mean curvature and thatr/ 	 d. With these observations, the
stability condition (47) follows from the same arguments as in [49]. With the proposed semi-implicit discretization we find
that C1 could be taken 10 times much larger than that in [3].

Finally, as also noted in [3] there could be a time-stepping constraint due to the viscous term when the interface is very
thin (small K) and there is a large viscosity jump:
Dtv 6 C2
Re

k� 1
minfDx;Dy;Dzg; ð48Þ
where C2 is a constant and can also be chosen 10 times larger than the value for the method in [3]. Our adaptive time-step-
ping strategy was then selected as
Dt ¼minfDtCFL;Dts;Dtvg: ð49Þ
After extensive numerical experimentation, we found that the stability parameters C1 and C2 could be chosen to be 100 in
our numerical experiments, thus the effective time step was comparable to Dt 6 0.5DtCFL in most of our computations.

4. Numerical examples

We now perform a numerical validation of the methodology and demonstrate its efficiency and potential with a set of
selected numerical experiments of physical relevance.



Fig. 4. A two-level composite grid for the accuracy test problem.
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4.1. Accuracy check

We first test the accuracy of the adaptive method using a fixed local mesh refinement. This consists of two grid blocks
forming an ‘‘L” shape that occupy the regions [0,0.125] � [0,0.25] � [0,0.5] and [0.125,0.375] � [0,0.25] � [0.375,0.5] as
shown in Fig. 4. The computational domain is the unit cube. The purpose of this static-grid test is to verify that the errors
introduced by interpolation and the discretization schemes at coarse–fine level interfaces are correctly controlled to prevent
global accuracy degradation. Also, because we have selected the refinements to partially reach the computational domain
boundary, the test allows us to verify that the boundary conditions are used properly when filling in ghost cells.

For this test, we construct an exact solution (/e, ue, pe) to the following forced Model H equations:
@/
@t
þ u � r/ ¼ r2lð/Þ þ FCHð/e;ueÞ; ð50Þ

lð/Þ ¼ /3 � /� K2r2/; ð51Þ

@u
@t
þ u � ru ¼ �rpþr2uþ lð/Þr/þ FNSð/e;ue;peÞ; ð52Þ

r � u ¼ 0; ð53Þ
in the unit cube X = [0,1] � [0,1] � [0,1] and with periodic boundary conditions. Naturally, in (50) and (52)
FCHð/e;ueÞ ¼
@/e

@t
þ ue � r/e �r2lð/eÞ; ð54Þ

FNSð/e;ue;peÞ ¼
@ue

@t
þ ue � rue þrpe �r2ue � lð/eÞr/e; ð55Þ
and /(0,x) = /e(0, x), u(0,x) = ue(0, x), and p(0, x) = pe(0, x).



Table 1
Convergence ratios (R) in a two-level composite grid for the forced Model H system. MW stands for the number of multigrid W cycles and n + 1 means a
n � n � n uniform grid plus one level of refinement.

n + 1 Variable Norm MW R

32 + 1 / k/ � /ek2 = 8.113969 � 10�2 9
p kp � pek2 = 5.391881 � 10�2 7
u ku � uek2 = 4.873936 � 10�3 9
v kv � vek2 = 9.129110 � 10�3 7
w kw � wek2 = 4.165557 � 10�3 8

64 + 1 / k/ � /ek2 = 2.425453 � 10�2 10 3.35
p kp � pek2 = 1.587228 � 10�2 9 3.40
u ku � uek2 = 1.165863 � 10�3 12 4.18
v kv � vek2 = 1.827253 � 10�3 11 5.00
w kw � wek2 = 4.286092 � 10�4 10 9.72

128 + 1 / k/ � /ek2 = 6.683664 � 10�3 10 3.63
p kp � pek2 = 4.900852 � 10�3 8 3.31
u ku � uek2 = 3.738785 � 10�4 16 3.12
v kv � vek2 = 4.286984 � 10�4 15 4.26
w kw � wek2 = 6.591865 � 10�5 13 6.50
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We select (/e, ue, pe) as follows:
/eðt; xÞ ¼ sin3ð2pxþ 2pyþ 2pzþ tÞ; ð56Þ
ueðt;xÞ ¼ sin2ð2pxþ 2pyþ 2pzþ tÞ; ð57Þ
veðt;xÞ ¼ cos2ð2pxþ 2pyþ 2pzþ tÞ; ð58Þ
weðt; xÞ ¼ 1; ð59Þ
peðt;xÞ ¼ cosð2pxþ 2pyþ 2pzþ tÞ: ð60Þ
We take K2 = 0.01, and the numerical parameters are s = 2 and �g ¼ 1. Table 1 shows the errors and convergence ratios for this
case. The notation ‘‘n + 1” in the first column, stands for a two-level composite grid formed by a n � n � n uniform grid (Level
1) plus one additional refinement level (Level 2). The number of multigrid W cycles (MW) to reach truncation error is also
displayed. The convergence ratios indicate that the error in the adaptive grid numerical approximation appears to be con-
sistent with that of a second order discretization.

4.2. Deformation of a neutrally buoyant drop

We now consider the deformation of an initially spherical drop under simple shear flow for small Reynolds and capillary
numbers. This numerical experiment is intended to serve three purposes: (1) to provide data that we can compare to exper-
imental and theoretical predictions and thus to give further validation and calibration to the model and to our numerical
approach, (2) to examine the performance of the semi-implicit discretization in the case of variable viscosity, and (3) to test
the adaptive mesh refinements in a difficult geometrical configuration, namely a spherical interface. Although simple in
appearance, a spherical interface poses significant challenges to the generation of efficient AMR. The meshing algorithm
is based on cuts along the coordinate axes and splits regions with flagged points (for refinement) into rectangular patches.
A circular or spherical interface cuts the grid at such an angle that it is necessary to employ a great number of small rect-
angular patches in order to satisfy the efficiency criterium, namely that the number of cells within a refinement patch should
nearly all be flagged cells.

We consider an initially spherical drop of radius R = 1/4 with center at xc = (1/2, 1/2, 1/2) in the domain
X = [0,1] � [0,1] � [0,1]. Initially, we specify the phase field as
/ð0; xÞ ¼ tanh
R� kx� xckffiffiffi

2
p

n

� �
; ð61Þ
where kx � xck is the Euclidian distance of a point x to xc. We take n = 1.5h, where h is the finest grid size. This choice cor-
responds to approximately six grid cells covering the equilibrium interface thickness. Fig. 5 displays the initial drop and
adaptive grid configuration for four levels of refinement.

For the initial velocity, we choose a linear shear
uð0; x; y; zÞ ¼ ð2z� 1;0;0Þ: ð62Þ
We maintain the shear by imposing u = �1 at z = 0 and u = 1 at z = 1 and assume periodic boundary conditions in the x and y
directions. At z = 0 and z = 1, we take v = w = 0 and apply homogeneous Neumann boundary conditions for / and the pressure
increment q there.



Fig. 5. Initial spherical drop configuration: (a) isosurface / = 0, (b) grid patches of the finest level surrounding the interface, (c) contour plot of / for a cut at
y = 0.5, and (d) the same cut showing the four levels of adaptive refinement.
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We fix the Reynolds number to Re = 1 and take Pe = 1/K, where K is the Cahn number (16). We employ four levels of
refinement which give a fine grid equivalent to a 2563 uniform mesh. Given our choice n = 1.5h, the Cahn number for the
four-level composite grid is K = 1.5/256.

We perform two series of numerical experiments. In the first one, we consider the same viscosity for the inner and outer
fluid (k = 1) and take the capillary numbers Ca = 0.15cK, 0.20cK, 0.25cK, and 0.30cK, where cK is the Cahn number (interfacial
thickness) factor (18). Based on the scaling argument leading to (17), these values of Ca would correspond to sharp interface
values Ca* equal to 0.15, 0.20, 0.25, and 0.30, respectively. One of the purposes of this experiment is to verify that the drop
experiences a behavior consistent with these values of Ca* and that the proposed scaling provides an appropriate calibration
of the diffuse-interface model. For the second test, we take k = 4 which corresponds to a case where the viscosity of the drop
is four times that of the surrounding fluid and Ca = 0.30cK. The numerical parameters in all the numerical experiments are
selected as s = 2 and �g ¼ k.

Fig. 6 shows an xz cut of the shear-deformed drop after reaching equilibrium. Under the influence of the flow, the drop
assumes the shape of a tilted ellipsoid with a deformation that is a function of the relative effects of surface tension and vis-
cous dissipation, i.e. of the capillary number Ca. The deformation parameter D is obtained in terms of the major and minor
axes and the inclination h is that of the major axis with respect to the horizontal (see for example [43,44]) as indicated in



Fig. 6. Drop deformation under shear flow. An xz cut of / and the corresponding adaptive, composite mesh patches. Left to right, top to bottom: Ca = 0.15cK,
Ca = 0.20cK, Ca = 0.25cK, and Ca = 0.30cK.
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Fig. 7. Equilibrium is determined to have been achieved when the deformation and inclination of the drop are invariant to
within numerical accuracy. Table 2 summarizes the values of D and h for the capillary numbers considered. Note that as Ca is
reduced h ? 45�, i.e. the drop tends to be aligned with the direction of principal extension. Moreover, except for the largest
Ca, the deformation has a nearly linear dependence with the capillary number, as Fig. 8 demonstrates. This linear behavior is
in agreement with the slender body theory [45] which applies in the limit Re ? 0 and Ca ? 0. Deviations from this asymp-
totic theory are expected for the large Ca* = 0.30 [44]. The deformation obtained for Ca = 0.2ck and Ca = 0.3cK is within 2% of
that reported in [48] (Note, that given our choices of characteristic length, that of the computational domain, and that our
relative shear velocity is twice the characteristic velocity, our Ca* corresponds to half the value in [48]).

We now consider the case of variable viscosity. The initial conditions and setup are the same as for the previous, constant
viscosity case but now the viscosity ratio is k = 4. The viscosity of the fluid surrounding the drop is four times that of the fluid
inside the drop. This particular viscosity ratio is a limit case in the study of flow-induced drop deformation. For k > 4 and with
an initially spherical drop, it is not possible to deform the drop beyond a modest distortion [44,45]. For sufficiently large k, if
the flow has enough vorticity, the drop will spin almost like a rigid body.

Fig. 9 and Table 3 compare the deformation of the drop with k = 4 with the corresponding values for the constant viscosity
case (k = 1) for a fixed capillary number, Ca = 0.30cK. As expected, the deformation and the inclination of the drop for k = 4 are
smaller than those for k = 1, despite the relatively large Ca. The method performs stably with the time-step criterium (49) for



Fig. 7. The axes ‘ and s and the angle of inclination h in a y = 0.5 cut of a drop under shear flow.

Table 2
Deformation D and angle of inclination h for different Ca. Here ‘ and s are the lengths of the major an minor axis, respectively, and cK ¼

ffiffiffi
2
p

=256 � 5:524� 10�3.

Ca D ¼ ‘�s
‘þs

h

0.15cK 0.0959 44�
0.20cK 0.123 43�
0.25cK 0.147 39�
0.30cK 0.184 36�

Ca

0.16

1.6

D

0.18

0.14

10−3

0.12

0.1

1.41.21.0

Fig. 8. Drop deformation D under shear flow against Ca.
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both k = 1 and k = 4. The time-step size for Re = 1 and the values of Ca considered in these drop deformation experiments is
dictated by Dts and its size is practically that of a CFL condition for most of the simulation time. Thus, the stability constraint



Fig. 9. Comparison of drop deformation under shear flow for viscosity ratios k = 1 (left) and k = 4 (right) with Ca = 0.30cK.

Table 3
Comparison of the deformation D and inclination angle h for two viscosity ratios, k = 1 and k = 4, and Ca = 0.30cK.

Ca Viscosity D h

0.30cK g(/) = 1 0.184 36�
0.30cK g(/) = 1.5/ + 2.5 0.173 31�
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induced by the surface tension term is not entirely removed by the proposed discretization but it is relaxed to a CFL-like
restriction in practice (C1 = 100). We have compared the performance of the proposed implicit surface tension discretization
with one using an explicit, second order (Gear) extrapolation of that term. The latter requires invariably a smaller Dt and this
becomes prohibitively small as Re and Ca decrease while Dt for the proposed semi-implicit approach remains of a practical
size.

4.3. Kelvin–Helmholtz instability

The Kelvin–Helmholtz (K–H) instability is one of the most fundamental instabilities in incompressible fluids and takes
place when two immiscible fluids shear past one another. The motion of the free surface separating the two shearing fluids
is dynamically driven by the K–H instability and competing effects of surface tension and viscosity. The investigation of such
dynamics is of both fundamental and practical interest. Mixing in the ocean and the atmosphere as well as in engineering
fluids such fuels and emulsions, are believed to be induced by instabilities of the K–H type and often these instabilities lead
to turbulence [46].

To simulate the K–H instability within Model H, we consider the evolution of a sheared, initially sinusoidal interface. We
assume constant viscosity (k = 1) and the Reynolds and capillary numbers are selected as Re = 5000, Ca = 200, respectively. As
before K = 1.5h, where h is the finest mesh grid size. We employ a composite grid of four levels of refinement, consequently
K = 1.5/256. We take Pe = 200, which remains O(1/K), and the numerical parameter s is set to 2.

We consider a flow that is independent of the y coordinate to test the ability of the adaptive code to retain the 2D sym-
metry. We define the initial / in terms of the distance to the curve
zc ¼ 0:01 sinð2pxÞ ð63Þ
as follows:
/ð0; x; y; zÞ ¼ tanh
3ðz� zcÞ

K

� �
; ð64Þ
for each (x, y, z) in X = [0,1] � [0,1] � [�1,1]. The initial phase field (64) varies from tanh (�3) � �0.995 to tanh (3) � 0.995
in a strip of only three computational cells of the finest level covering the transition region.



Fig. 10. K–H instability: 2D cut of the order parameter / at different times; (a) t = 0, (b) t = 0.65, (c) t = 0.87, (d) t = 1.43, (e) t = 1.63, and (f) t = 1.83.
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We specify an initial shear flow in the x direction by
uð0; x; y; zÞ ¼ ðtanh½25ðz� zcÞ�;0; 0Þ ð65Þ
and impose u = ±1 and v = w = 0 at z = ±1 and periodic boundary conditions in the x and y directions.



Fig. 11. K–H instability: (a) stream-wise (u) velocity component and (b) normal-wall (w) velocity component at t = 1.69.
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Fig. 10 shows a two dimensional cut of the order parameter / at different times to illustrate the evolution of the shearing
interface. Early in the dynamics, the flow sweeps the initial interfacial vorticity into the center and as vorticity accumulates
at this point, the surface begins to steepen. Roll-up follows and the surface evolves into a spiral with a ‘‘cat eye” shape typ-
ically observed in the experiments [46]. A look at the stream-wise and normal-wall velocity components at late time of the
evolution (Fig. 11) indicates two strong centers of vorticity driving up the dynamics. Throughout the entire motion, the finest
level of the adaptive mesh covers the diffuse interface and the 2D geometry of the motion is retained as Fig. 12 demonstrates.
The dynamics of the rolling sheet are consistent with those obtained in 2D numerical simulations using immersed boundary
type methods [41,47].

4.4. Coalescence of deformable drops

For our final test, we consider an initial configuration of two identical spherical drops of radius R = 1/5, separated a small
distance apart. The drops are going to be brought into a glancing collision by a shear flow. The problem of flow-induced coa-
lescence has received considerable recent attention due to the role that this process plays in the formation of polymer
blends, which is currently the major route to new polymeric materials with desired macroscopic properties. The understand-
ing of the conditions for coalescence and their dependence on fluid and flow properties is critical for controlling this process.

In the context of phase-field models, Barosan et al. [20] considered 2D flow-induced drop coalescence to test the capa-
bilities of their modern, adaptive mortar elements method. As indicated earlier, there are few works on adaptive, phase field,
conservative methods and the challenging coalescence simulations in [20] are one of the very few existing examples. For our
simulation we have chosen to use the same setup as in [20] but in 3D. One more important difference is that we retain iner-
tial effects (full Navier–Stokes equations) whereas in [20] a Stokes approximation (Re = 0) is used. This numerical experiment
offers the opportunity to test the proposed phase-field based method through an interfacial topological change and to exam-
ine the conservation of volume during that singular transition.

Initially, the center of the drops is at
x1 ¼ ð0:299;0:5;0:45Þ; ð66Þ
x2 ¼ ð0:701;0:5; 0:55Þ; ð67Þ
respectively and the computational domain is X = [0,1] � [0,1] � [0,1]. The initial order parameter is given by
/ð0;xÞ ¼
tanh R�kx�x1kffiffi

2
p

K

	 

for kx� x1k < Rþ 2

ffiffiffi
2
p

K;

tanh R�kx�x2kffiffi
2
p

K

	 

for kx� x2k < Rþ 2

ffiffiffi
2
p

K:

8><
>: : ð68Þ



Fig. 12. K–H instability: (a) isosurface at t = 1.69 and (b) a y = 0.5 cut of the four level, composite adaptive mesh at t = 1.69.

Fig. 13. Flow-induced drop coalescence: (a) isosurface / = 0 at t = 0 and (b) a y = 0.5 cut of the four level, composite adaptive mesh at t = 0.
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The initial velocity is the simple linear shear flow (62). We take k = 1 (viscosity ratio equal one) and Ca = 0.001 as in [20] and
Re = 0.1. We employ four levels of refinement and K = 1.4/256. Fig. 13 shows the initial configuration of the drops and the
adaptive mesh refinement, represented as grid patches (with black perimeters) corresponding to the different adaptive
levels.

A sequence of the flow dynamics is depicted in Fig. 14 where a 2D, xz plane cut is chosen to better visualize the drop
interaction. Once all the fluid from the initially thin gap between the two drops is drained the drops coalesce and a sin-
gle drop is formed. Eventually, this drop evolves into an ellipsoid reaching a steady state that balances the shear stress,
surface tension, and viscous dissipation. Fig. 15 shows in a 2D cut the adaptive mesh patches of the four-level composite



Fig. 14. Flow-induced drop coalescence dynamics. 2D, xz cuts of the order parameter.
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grid as well as isosurfaces (/ = 0) of the order parameter at two flow instants. The finest refinement level accompanies
the fluid interfaces and the interaction region until the order parameter reaches a nearly uniform value inside the coa-
lesced drop. Throughout the entire computation the mean of the order parameter and the volume of the drops have a



Fig. 15. Flow-induced drop coalescence. 2D cut of the four-level adaptive mesh patches and isosurfaces / = 0 at two different times.
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variation of only 0.09%. Fig. 16 compares the number of computational cells of the four-level adaptive grid, as it evolves
in time, against a corresponding uniform grid. Even with only four levels of refinement, the composite grid uses only
nearly a quarter of the computational cells required by a uniform grid with the same resolution. Of course, the savings
increase as the number of refinement levels is increased, leading in the limit to an asymptotic linear scaling of the com-
putational work.
5. Conclusions

We presented a fully adaptive 3D computational strategy for the simulation of multi-phase flows described by conserva-
tive phase-field models such as Model H. The proposed numerical methodology combines efficiently local adaptive mesh
refinements, a variable time-stepping semi-implicit time discretization, and the use of linear multi-level multigrid solvers;
only five linear solvers are required per time-step. The discretization relaxes high order stability constraints and does not
carry the cost of nonlinear iterative solvers used in fully implicit discretizations. The adaptive methodology is constructed
from scratch to allow a systematic investigation of the key aspects of AMR in a conservative phase-field model setting: flag-
ging, interpolation, and multi-level composite grid solvers. The efficiency, capabilities and potential of the methodology were
demonstrated with illustrative examples of drop deformation, Kelvin–Helmholtz instability, and flow-induced drop
coalescence.
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